
B. I. Ardashev and Yu. M. Popova

The isocyanates obtained by rearrangement of azides of quinaldic and quinoline-2,4-dicarboxylic acids exist as trimers. A number of urethanes were obtained by the decomposition of these azides in the presence of alcohols. The possibility of the use of the azide of quinoline-2,4-carboxylic acid to obtain polymers was investigated.

Isocyanates of the heterocyclic series are currently being studied in connection with the possibility of their use for the synthesis of pharmaceutical preparations [1-3] and high-molecular-weight compounds [4,5].

In this communication, we describe the synthesis and several transformations of isocyanates of the quinoline series. 2-Quinolyl isocyanate and 2,4-quinolyl diisocyanate were obtained by rearrangement of the azides of quinaldic (I) and quinoline-2,4-dicarboxylic (II) acids via the Curtius method by heating in dry benzene to $60-70^{\circ}$ C. Trimerization to triquinolyl isocyanurates occurs under the reaction conditions. The characteristic frequencies of the N=C=O group (2200-2270 cm⁻¹) are absent in the IR spectra of the trimers, and there is a C=O band at 1715 cm⁻¹. The trimers of the isocyanates are stable on heating and do not change on refluxing with water, alcohols, and alkalis. A number of urethanes were obtained by heating I or II with alcohols, and polymers of the polyurethane type with molecular weights of 12,000-14,000 and polyureas with molecular weights of 8000-10,000 are formed when II is decomposed in the presence of ethylene glycol or hexamethylenediamine.

EXPERIMENTAL

<u>Quinaldic Acid Azide (1)</u>. A solution of 3.5 g (0.05 mole) of sodium nitrite in 20 ml of water was added to a cooled (to 10°) solution of 4.7 g (0.025 mole) of quinaldic acid hydrazide in 90 ml of 2% hydro-

TABLE 1. Alkoxycarbonylaminoquinolines											
		1.	1								

· · ·	mp, °C	Empirical formula	Found, %		%	Calc., %			Yield.
Compound			С	н	N	С	н	N	%
2-(Ethoxycarbonylamino)quinoline 2-(Isopropoxycarbonylamino)- quinoline	98 92	$\begin{array}{c} C_{12} H_{12} N_2 O_2 \\ C_{13} H_{14} N_2 O_2 \end{array}$				66,7 67,8			
2-(Allyloxycarbonylamino)quin- oline	72—73	$C_{13}H_{12}N_2O_2$	68,2	5,7	12,4	68,4	5,7	12,3	92
2-(Benzyloxycarbonylamino)quin- oline	98	$C_{17}H_{14}N_{2}O_{2}$	73,5	5,2	10,3	73,4	5,0	10,1	80
2,4-Di(ethoxycarbonylamino)- quinoline	180	$C_{15}H_{17}N_{3}O_{4}$	59,7	5,8	13,6	59,4	5,6	13,9	87

Novocherkassk Polytechnic Institute. Translated from Khimiya Geterotsiklicheskikh Soedinenii, No. 4, pp. 527-528, April, 1972. Original article submitted March 31, 1971.

© 1974 Consultants Bureau, a division of Plenum Publishing Corporation, 227 West 17th Street, New York, N. Y. 10011. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, microfilming, recording or otherwise, without written permission of the publisher. A copy of this article is available from the publisher for \$15.00. chloric acid. The resulting precipitate was removed by filtration, washed with cold water, and air-dried to give 4.5 g (90%) of a product with mp 93°. Found: C 60.8; H 3.2; N 28.3%. $C_{10}H_6N_4O$. Calculated: C 60.6; H 3.0; N 28.3%.

Triquinolyl Isocyanurate. A suspension of 5 g (0.025 mole) of I in 50 ml of dry benzene was heated to $60-70^{\circ}$. After the solid had dissolved, the solution was cooled, and the resulting precipitate was recrystallized from benzene to give 3.8 g (89%) of a product with mp 216°. Found: C 70.4; H 3.7; N 16.5%; M 500 (ebullioscopically in dioxane). C₃₀H₁₈N₆O₃. Calculated: C 70.6; H 3.5; N 16.5%; M 510.

Alkoxycarbonylaminoquinolines. These compounds were obtained by heating I or II in excess alcohol at 80° for 1 h. The precipitate that formed on cooling was recrystallized from n-heptane (Table 1).

Decomposition of II in Ethylene Glycol. A solution of 2.67 g (0.01 mole) of II and 1.2 g (0.02 mole) of ethylene glycol in 50 ml of dioxane was heated to $6^{0}-80^{\circ}$ under an inert gas. The precipitated polymer was removed by filtration, washed with alcohol, and vacuum-dried to give a quantitative yield of a polymer with mp 240-247° and a molecular weight of 12,100; 14,300 (via the method in [6]).

Decomposition of II in Hexamethylenediamine. As in the preceding experiment, 4.7 g (95%) of a polymer with mp 210-214° and a molecular weight of 10,100; 8300 was obtained from 2.67 g (0.01 mole) of II and 2.9 g (0.025 mole) of hexamethylenediamine.

LITERATURE CITED

- 1. V. I. Gorbunov, A. N. Kost, and R. S. Sagitullin, Khim.-Farmats. Zh., No. 9, 12 (1968).
- 2. B. Baker, R. Patel, and P. Almaula, J. Pharm. Sci., 52, 1051 (1963).
- 3. S. Ogawara, Japanese Patent No. 2291 (1960); Chem. Abstr., 54, 20,317 (1960).
- 4. I. Hyden and G. Wilbert, Chem. Ind., <u>33</u>, 1406 (1967).
- 5. D. Kh. Saunders and K. K. Frish, Chemistry of Polyurethanes [in Russian], Khimiya, Moscow (1968), p. 31.
- 6. I. L. Losev and O. Ya. Fedotova, Practical Course in the Chemistry of High-Molecular-Weight Compounds [in Russian], Goskhimizdat, Moscow (1962), p. 29.